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Abstract

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate
observation system that has been designed to monitor the Earth’s climate with un-
precedented absolute radiometric accuracy and SI traceability. Climate Observation
System Simulation Experiments (OSSEs) have been generated to simulate CLARREO5

hyperspectral shortwave imager measurements to help define the measurement char-
acteristics needed for CLARREO to achieve its objectives. To evaluate how well the
OSSE-simulated reflectance spectra reproduce the Earth’s climate variability at the
beginning of the 21st century, we compared the variability of the OSSE reflectance
spectra to that of the reflectance spectra measured by the Scanning Imaging Absorp-10

tion Spectrometer for Atmospheric Cartography (SCIAMACHY). Principal component
analysis (PCA) is a multivariate spectral decomposition technique used to represent
and study the variability of hyperspectral radiation measurements. Using PCA, between
99.7 % and 99.9 % of the total variance the OSSE and SCIAMACHY data sets can be
explained by subspaces defined by six principal components (PCs). To quantify how15

much information is shared between the simulated and observed data sets, we spec-
trally decomposed the intersection of the two data set subspaces. The results from
four cases in 2004 showed that the two data sets share eight (January and October)
and seven (April and July) dimensions, which correspond to about 99.9 % of the total
SCIAMACHY variance for each month. The spectral nature of these shared spaces,20

understood by examining the transformed eigenvectors calculated from the subspace
intersections, exhibit similar physical characteristics to the original PCs calculated from
each data set, such as water vapor absorption, vegetation reflectance, and cloud re-
flectance.
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1 Introduction

Spatial and temporal local variations in the net radiative forcing (the difference be-
tween the absorbed solar irradiance and the emitted longwave irradiance at the top of
the tropopause) drive the Earth’s weather and climate. The Earth’s climate system is
approximately in planetary radiative equilibrium when the net radiative forcing is zero5

over global and annual scales. Hansen et al. (2011) estimated the global radiative im-
balance between 2005 and 2010 to be 0.58±0.15 Wm−2, which will cause the Earth’s
temperature to increase until the Earth returns to radiative equilibrium. A global mean
radiative imbalance can be caused by changes in several climate variables, such as
greenhouse gases, land surface type, aerosol properties, and incoming solar irradiance10

(IPCC, 2007). Identifying radiative imbalances, accurately assessing their magnitude,
and attributing those imbalances to atmospheric and surface variables will aid in the
understanding of how and why the Earth’s climate is changing.

Absorbed solar radiation, one of the primary components in the global radiative en-
ergy budget, is the difference between the incident top-of-atmosphere solar irradiance15

and reflected solar irradiance. Therefore, in addition to monitoring the downwelling top
of the atmosphere solar irradiance at high accuracy, currently with the Solar Radia-
tion and Climate Experiment (SORCE) (Rottman et al., 2005) Total Irradiance Monitor
(Kopp et al., 2005), monitoring and studying the spatial, temporal, and spectral variabil-
ity of the Earth-reflected solar radiation is a key component to understanding changes20

in Earth’s climate.
Reflected solar radiation from Earth contains information about several variables rel-

evant to changes in Earth’s climate, including cloud properties, aerosols, land surface
albedo, and sea ice (National Research Council, 2007; Loeb et al., 2007; Roberts
et al., 2011; Wielicki et al., 2012). Changes in these and other atmospheric and sur-25

face variables impact the spectral, spatial, and temporal variability of reflected solar ra-
diation through spectrally dependent scattering and absorption processes. Monitoring
solar reflectance from space to study climate requires highly accurate, hyperspectral
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measurements (Wielicki et al., 2012). In this context hyperspectral refers to spectrally
contiguous, overlapping spectral radiation measurements (Goetz et al., 1985; Goetz,
2009); solar (shortwave) radiation includes wavelengths ranging from the near ultra-
violet to the near infrared, 300–2500 nm, accounting for approximately 95 % of the
solar radiation incident at the top of the atmosphere. Since the 1970s, the informa-5

tion in shortwave hyperspectral measurements has facilitated the identification of in-
dividual surface materials and the application of sophisticated atmospheric correction
techniques to obtain surface spectral reflectance (Goetz, 2009). The information about
Earth’s surface and atmospheric properties in space-based hyperspectral shortwave
measurements can also be used in climate change detection and attribution studies.10

This information in spectrally resolved shortwave radiation can be used to understand
the variability of the climate system using spectral decomposition techniques such as
principal component analysis (PCA) (Rabbette and Pilewskie, 2001; 2002; Grenfell and
Perovich, 2008; Roberts et al., 2011).

Roberts et al. (2011) quantified the spectral variability of Earth-reflected hyperspec-15

tral solar radiance to study the information contained in direct satellite measurements
for climate change detection and attribution. Although complete separation of all at-
mospheric and surface variables represented in a reflectance spectrum is challenging
even using information-rich hyperspectral measurements, occasionally it is possible to
spectrally identify the physical variance drivers such as clouds, sea ice, and vegetation20

using spectral decomposition techniques (Rabbette and Pilewskie, 2001, 2002; Huang
and Yung, 2005; Roberts et al., 2011). For example, Roberts et al. (2011) applied PCA
to Arctic Ocean radiance spectra, separating contributions to the data variance from
clouds and sea ice. These results demonstrated that hyperspectral reflected radiation
contains physical information about the Earth’s climate system that can be extracted25

with multivariate spectral decomposition techniques.
Highly accurate climate observation systems are being designed that will include

spectrally resolved measurements in the visible and near infrared. Such systems
include the Climate Absolute Radiance and Refractivity Observatory (CLARREO)
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(National Research Council, 2007; Wielicki et al., 2012) and the Traceable Radiom-
etry Underpinning Terrestrial- and Helio- Studies (TRUTHS) (Fox et al., 2003, 2011).
The shortwave instruments proposed by both of these projects will provide high spec-
tral resolution measurements with unprecedented absolute radiometric accuracy and
SI traceability.5

Feldman et al. (2011a) designed a climate Observation System Simulation Experi-
ment (OSSE) as a CLARREO shortwave instrument emulator used to derive measure-
ment and mission requirements. For the OSSE, Feldman et al. (2011a) used global
climate model output with a radiative transfer model to simulate CLARREO shortwave
instrument reflectance measurements. By comparing OSSE output from forced and10

unforced scenarios, changes in variables such as clouds, aerosols, sea ice, and snow
cover were evident in zonally averaged spectra, implying that spectrally resolved re-
flectance may be capable of detecting changes in key climate variables by the mid-
dle and end of the 21st century (Feldman et al., 2011a). Using the OSSE, Feldman
et al. (2011b) also found that spectrally resolved reflectance improves time-to-detection15

over broadband shortwave measurements. The results from the climate OSSE studies
further support the need for a highly accurate climate observation system that includes
hyperspectral shortwave reflectance measurements (Feldman et al., 2011a,b; Wielicki
et al., 2012).

The climate OSSE is a powerful tool; however, we need to evaluate how realistic20

the variability of these simulated spectral reflectance spectra is relative to observa-
tions of spectral reflectance. The ability of the OSSE to reproduce present-day climate
variability is necessary to use OSSE simulations to make confident statements about
climate change detection and attribution. There is still the possibility, however, that
even if the OSSE is able to meet this necessary condition of reproducing present day25

climate variability, its twenty-first century climate change predictions may not be real-
istic depending on how well the underlying climate model simulates future changes in
climate. The spectral variability of simulated and observed hyperspectral reflectance
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can be compared both qualitatively (Feldman et al., 2011b), and quantitatively, by the
methods presented here.

In this study, we evaluate how well simulated shortwave hyperspectral reflectance re-
produces the variability in satellite-measured reflectance. To address this question we
will explore the utility of the variability of shortwave reflectance to serve as an appropri-5

ate measure of the similarity between two data sets. Roberts et al. (2011) showed that it
is possible to extract physical variables from directly measured radiance using principal
component analysis rather than inverse modeling techniques or any other model-based
analysis. Therefore, we compare the variability of measured and simulated reflectance
using PCA and other multivariate analysis techniques to quantify their similarity.10

The next section is an overview of the observed and simulated reflectance spectra
used in this study. Section 3 details the multivariate techniques used in the compar-
isons. In Sect. 4, we present an example that exhibits the quantitative comparison
techniques with data, and Sect. 5 provides a summary of the study, conclusions, and
a discussion of future work.15

2 Data

2.1 Observed reflectance – SCIAMACHY measurements

This study uses hyperspectral reflectance measured by the Scanning Imaging Absorp-
tion Spectrometer for Atmospheric Cartography (SCIAMACHY) (Bovensmann et al.,
1999). SCIAMACHY flew on the European Space Agency’s ENVISAT (Environmen-20

tal Satellite), a sun-synchronous satellite in near polar orbit that operated from March
2002 to April 2012. In May 2012, the European Space Agency declared the official end
of the ENVISAT mission after a spacecraft failure in April 2012. SCIAMACHY was de-
signed to study the effect of natural and anthropogenic sources on global atmospheric
composition (Gottwald et al., 2011c). Additional objectives included understanding the25

global distribution, chemistry, and physics of trace gases, aerosols, and clouds in the
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troposphere, stratosphere, and mesosphere (Bovensmann et al., 1999). SCIAMACHY
measured across eight channels covering the spectral ranges 214–1773 nm, 1934–
2044 nm, and 2259–2386 nm with spectral resolutions ranging between 0.22 nm and
1.48 nm (Gottwald et al., 2011a). Ice deposited on channels seven and eight (spanning
1934–2386 nm), interfering with the optical throughput (Gottwald et al., 2011b). For the5

present study, analysis is restricted to the wavelength range 300 nm to 1750 nm. Nadir
pixel size is dependent on the integration time and swath width, causing footprint sizes
to vary between 26 km (along track) by 30 km (across track) and 32 km (along track) by
930 km (across track). For nadir sampling, SCIAMACHY has a scanning angular width
of ±32◦ across track, which corresponds to a maximum nadir swath width of 960 km10

(Gottwald et al., 2011a). The measurement characteristics of SCIAMACHY make it the
best candidate to compare space-based observations of shortwave reflectance with
climate OSSE-simulated reflectance spectra.

2.1.1 SCIAMACHY reflectance spectra

Figure 1 presents three examples of SCIAMACHY reflectance spectra for different15

scene types: a thick cloud (black), cloud-free green vegetation (blue), and cloud-free
ocean (red). Spectral reflectance, Rλ, is defined by,

Rλ =
πI↑λ

cos(θ)F ↓
λ

(1)

where I↑λ is reflected spectral radiance, F ↓
λ is the incident spectral solar irradiance at

the top of the atmosphere, and θ is the solar zenith angle. Similarities among the20

three spectra in Fig. 1 include absorption features such as the oxygen-A band cen-
tered around 762 nm and water absorption bands centered at 940 nm, 1140 nm, and
1350 nm. There are also differences among these reflectance spectra that are char-
acteristic of the different scenes. Throughout the visible and much of the near infrared
outside water absorption bands, the reflectance values for the thick cloud spectrum25
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are generally higher than the two surface reflectance spectra shown. For a cloud-free
ocean spectrum measured at nadir, the reflectance values are low throughout the spec-
tral range except between 300 nm to 400 nm where atmospheric molecular and aerosol
scattering increase reflectance. The spectrum measured over green vegetation has low
reflectance in the visible with a local maximum known as the “green peak”, centered5

around 550 nm. The vegetation “red edge” is the increase in reflectance between 700
and 750 nm. These examples of reflectance serve as a frame of reference when exam-
ining the spectral shapes of principal components, such as those shown in Fig. 4, which
often resemble reflectance spectra, albeit often with a linear and nonlinear mixture of
source signatures.10

2.2 Simulated reflectance – observation system simulation experiments

Feldman et al. (2011a) constructed OSSEs using input from the Community Climate
System Model version 3.0 (CCSM) (Collins et al., 2006) Global Climate Model and
using MODTRAN 5.3 (Anderson et al., 1999) to simulate CLARREO shortwave spec-
tral reflectance measurements during the twenty-first century. Monthly averaged fields15

from two IPCC AR4 emission scenarios were used to produce the OSSE results. The
all-sky (cloud-inclusive scenes) reflectance spectra used in this study were simulated
using the unforced constant CO2 emission scenario model results, in which well-mixed
radiatively active atmospheric greenhouse gases and aerosols were held constant at
levels observed in the year 2000 throughout the model run (Meehl et al., 2005, 2007).20

Results from the forced A2 emission scenario (IPCC, 2007), in which concentrations
of well-mixed greenhouse gases were steadily increased to the year 2050 then re-
duced to 1900 levels by the year 2100, were also used to simulate reflectance using
the OSSE (Feldman et al., 2011a). Changes in the climate system over the course of
the century include a tripling of CO2 relative to pre-industrial levels, surface warming,25

and decreases in snow and ice cover. In the present study we have used the unforced
scenario results because we are comparing individual months at the beginning of the
21st century, when differences between the two scenarios are minimal.
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3 Quantitative multivariate methods

3.1 Principal component analysis

Principal component analysis (PCA) is a spectral decomposition technique used to
quantify the variance distribution in a multivariate data set. The principal components
(PCs) are linear combinations of the original variables, in this case the spectral re-5

flectance values. If the original variables are correlated (as is generally the case with
reflectance spectra), PCA can significantly reduce the number of variables needed to
explain the majority of the variance in a data set. Roberts et al. (2011) presented a liter-
ature review of how PCA has been used in various atmospheric science applications,
specifically to understand the variability of spectral radiation in the longwave (longer10

than 4 µm) and the shortwave (350 nm–2500 nm).

3.1.1 PCA input

Shortwave reflected radiation provides a number of options for what form of the data
to use in PCA, each of which has its own advantages. Roberts et al. (2011) used stan-
dardized spectral radiance rather than unstandardized radiance because of the large15

differences in spectral variance. Wavelength bands with the most variability in spectral
radiance (largest spectral variance) dominate the spectral shapes of the PCs. By stan-
dardizing the data, principal components typically represent physical variables more
prominently than PCs calculated from unstandardized data (Preisendorfer, 1988). Stan-
dardized radiances are calculated by spectrally mean-centering the radiances and nor-20

malizing them by the spectral standard deviation. The standardized PCs can be used
when comparing two data sets, but not to quantify how much information is shared be-
tween them. Unstandardized data must be used in quantitative comparisons because
the standard deviation contains pertinent information about each data set. Haskins
et al. (1999) compared both standardized and unstandardized infrared radiance PCs,25

taking advantage of both the qualities of the standardized and unstandardized principal
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components. When the information in the standard deviation is removed, it becomes
difficult to identify genuine differences and similarities between two data sets, the main
purpose of this study.

Using reflectance rather than radiance is one way to avoid using standardized radi-
ance while retaining the information in the standard deviation. Normalization by inci-5

dent solar irradiance removes this known and dominant spectral shape from the PCs,
leaving the influences due to atmosphere and surface properties. In the case of SCIA-
MACHY, the calculation of reflectance may also remove instrument anomalies because
the downwelling TOA solar irradiance and Earth-reflected radiance are measured us-
ing the same sensors, in part diminishing the impact of spectrally dependent noise on10

the PCA results.

3.1.2 PCA descrption

The first step in principal component analysis is calculating the covariance matrix, C,
from the spectrally mean-centered reflectance spectra. Using a spectral decomposi-
tion technique, the eigenvalues (Ω) and eigenvectors (E) of the covariance matrix are15

determined such that they satisfy the characteristic equation, CE =ΩE, where E is
a K ×K matrix, and Ω is a K ×K diagonal matrix composed of the eigenvalues (ω). K
is the number of variables, or spectral bands, contained in each spectrum. Each eigen-
value, ωk , is the variance explained by each eigenvector. In this study we define the
principal components (PCs) to be the eigenvectors scaled by the square root of their20

corresponding eigenvalues:

PCk =
√
ωkEk (2)

The spectral shapes of the principal components may provide insight into which phys-
ical variables are explained by each PC dimension. Projection of the mean-centered
data onto the eigenvectors are the PC scores, the weighted averages of the input data25

with the eigenvectors as the weights. Depending on the spatial or temporal distribution
of the data, the scores can be used to evaluate how the principal components vary in
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space or time. The physical significance of PCs is often difficult to determine because
the PCs are linear combinations of the original variables. The original variables may
have nonlinear dependencies on the physical variance drivers; however, some of the
dominant physical variables can occasionally be identified. For a more detailed and
mathematically rigorous description of PCA, consult Roberts et al. (2011) and Jolliffe5

(2002).

3.1.3 Boundary between data signal and noise

There are several methods that can be applied to estimate the number of dimensions
that define the boundary between signal and noise in a data set (Jolliffe, 2002). Cat-
tell (1966) suggested using a plot of the eigenvalues on a linear scale to determine10

the location of this boundary. It is identified graphically by visually locating the initial
change in slope in the eigenvalue spectrum. Craddock and Flood (1969) presented
a similar technique, but instead used a logarithmic eigenvalue scale, a method that has
been justified with the PCA of simulated data with known variance structures (Farmer,
1971). In studying the eigenvalue spectrum calculated from PCA of solar radiation, we15

have found that the logarithmic plot of the eigenvalues is one of the best tools to iden-
tify how many PCs explain signal in the data. Kaiser (1960) suggests that all principal
components associated with eigenvalues larger than the average eigenvalue explain
the signal. A more liberal criterion can be used in which some fraction (typically 0.7)
of the average eigenvalue is used as the cut-off, in an attempt to account for pos-20

sible sampling variations (Jolliffe, 1972). In the Broken Stick Method (Jolliffe, 2002),
ωk > 1

K

∑K
j=k

1
j ωavg is the criterion for determining the location of the boundary. The

subjectivity of locating this boundary is recognized by all the studies discussed here,
but these suggested techniques often help to provide guidance in making this decision.
The information provided by these selection criteria help us to make sense of the sub-25

space comparison techniques applied to the two data sets below. An approximation of
the boundary between signal and noise in these two data sets puts the results from the
significance test described in Sect. 3.2.4 into context as we will discuss in Sect. 4.
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3.2 Quantitative comparison description

3.2.1 Comparing spectral variability in the infrared

Comparing the variability between two data sets of radiance data using second-
moment statistics (statistics derived from the squared values of the data, such as
variance) as an objective test of climate models is a technique that has been used5

by several others (Goody et al., 1998). For example, second-moment statistics have
been used to evaluate climate model variability in temperature (Polyak, 1996) and long-
wave emission spectra (Haskins et al., 1997, 1999; Huang et al., 2002). All of these
studies state that the model needs to exhibit correct second-moment statistics with
respect to sufficiently accurate measurements to be considered rigorously validated.10

Haskins et al. (1997) compared the variance contribution and the spectral shapes of
principal components to evaluate how well simulated infrared spectra reproduced the
variability observed in Infrared Interferometer Spectrometer (IRIS) measurements. In
a subsequent study, Haskins et al. (1999) inverted IRIS radiance principal components
to derive cloud fraction, relative humidity, and temperature. Those principal component15

inversions quantified the constraints imposed upon climate models by infrared radiance
measurements confirming that clouds are a dominant driver of the climate system and
explain the largest fraction of the variance in the measured data (Haskins et al., 1999).
Haskins et al. (1999) also concluded that if a model is unable to reproduce the ob-
served cloud variability represented in the most dominant principal component, it is un-20

likely that it would simulate realistic changes in climate. Huang et al. (2002) combined
principal component analysis with statistical regression techniques to quantify how well
a GCM represented cloud variability relative to IRIS measurements and found that the
model underestimated cloud variations by 2 to 6 times compared to measurements.
The latter two studies converted the PCs of observed radiance to physical quantities25

using inversions and regression techniques to quantitatively evaluate the performance
of climate models. In the present study, we only use the information provided by the
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principal components that explain nearly all the variance in the data set to evaluate
simulated reflectance.

3.2.2 Quantitative comparison using subspace intersection

There are several methods that can be used to compare the variability of two data sets.
Similar to variability analysis in the infrared introduced above, one method is to com-5

pare the spectral shapes of the components. This comparison can be helpful in that it is
a preliminary, qualitative, representation of the relationship between the two data sets.
Here, we examine the information shared by two data sets by applying a method similar
to that used by Goetz et al. (1998) to develop a novel atmospheric correction lookup ta-
ble method to retrieve AVIRIS surface reflectance. This method compared subspaces10

of the measured AVIRIS radiance spectra with that simulated by MODTRAN under
a variety of atmospheric conditions. The spectral decomposition of the intersection be-
tween these subspaces determined how many dimensions the two data sets shared.
The intersection was used as a transformation between the two data sets providing
the means to relate the simulated atmospheric conditions with those observed in the15

AVIRIS spectra. The Goetz et al. (1998) primary objective was to develop a compu-
tationally efficient method of atmospheric correction for surface reflectance studies. In
the present study, a similar mathematical framework is applied to determine how much
of the total variance is shared between two data sets as a quantitative measure of their
similarity.20

Quantitative methods similar to those presented in this paper have been used in
other areas of atmospheric science and other scientific fields to evaluate multivari-
ate data (e.g. Krzanowski, 1979; Crone and Crosby, 1995). For example, Crone and
Crosby (1995) used the spectral decomposition of the intersection between subspaces
of independent satellite measurements to determine their similarity. Determining the25

significance of the difference between two subspaces is instrumental for principal com-
ponent regression because this decision gives guidance for determining if a subspace
defined by one set of principal components is appropriate to explain the variability of
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another (Crone and Crosby, 1995; Jolliffe, 2002). The ultimate goal of the present study
is to evaluate one data set based on its relationship to another, so we employ similar
spectral decomposition analysis techniques.

3.2.3 Mathematical details of intersection decomposition

The intersection comparison method described here is largely derived from a tech-5

nique described by Krzanowski (1979) for comparing groups of principal components.
First, we calculate the principal components as described in Sect. 3.1.2. The following
process is repeated p times, where 1 ≤ k ≤ p, and p is some number less than the
total number of PCs. Using the eigenvectors calculated from PCA, we calculate the
intersection (I) between the two data sets using:10

I = EAET
BEBET

A (3)

The intersection will be a k ×k square matrix. The eigenvector matrices (EA and EB)
used to calculate the intersection are composed only of the k eigenvectors used to
define the subspace. Singular value decomposition determines the eigenvalues (Γ) and
eigenvectors (Y) of I. Because I is a symmetrical matrix, the two sets of eigenvectors15

calculated in this decomposition are equivalent:

I = YΓYT (4)

The eigenvalues on the diagonal of the k ×k diagonal eigenvalue matrix (Γ) can also
be represented as a vector, γ, k elements long.

The spectral decomposition provides information from which we can understand the20

amount of shared variance between the two subspaces. The eigenvector matrix, Y, is
used to determine the transformed eigenvector matrices for each data set in the shared
intersecting space:

A = ET
AY (5a)
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B = ET
BEBA (5b)

Each of the k vectors in A and B are mutually orthogonal and are used to understand
the spectral nature of the overlap between the two data sets.

The eigenvalues in γ provide a measure of similarity between each pair of sub-5

spaces. If the sum of all the eigenvalues (also the trace of the intersection matrix in
Eq. 4) is equivalent to the number of dimensions, k, included in the analysis, the two
subspaces are equivalent. If the sum of all k eigenvalues is zero, then the two data
sets are completely orthogonal and do not share any information.

3.2.4 Subspace similarity significance10

We adopt the Crone and Crosby (1995) method for determining if two subspaces are
significantly close at the 95 % confidence level using their distance. That is, if the dis-
tance between the two subspaces is significantly small, they are similar. The result from
this significance test provides an upper limit for the number of dimensions that two data
sets share and can be used as a guideline. This significance test determines how much15

of the total variance of each data set is shared between the two data sets. Determining
if two subspaces are equivalent is not the same as concluding that the individual PCs
are the same, nor is it equivalent to concluding that the covariance matrices calculated
in the PCA process are equal to each other; rather, this analysis helps to determine to
what degree the subspaces spanned by the k PCs are similar.20

To address this question, we use a metric called the subspace distance, which is
defined using the intersection eigenvalues:

D(
_

Obs,
_

Sim)k =

√√√√k −
k∑
1

γk (6)
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where k is the number of PCs used to define the subspace and
_

Sim and
_

Obs represent
the original simulated and observed reflectance data sets, respectively. The distance
defined in Eq. (7) is the sample distance calculated from the spectral decomposition
of the intersection between the two data sets. We use this sample distance to test
the null hypothesis that the population distance between the two subspaces is zero,5

D(Obs,Sim)k = 0, against the alternative hypothesis that D(Obs,Sim)k > 0.
The distance metric is used in the triangle inequality to construct a confidence inter-

val that tests the null hypothesis (Crone and Crosby, 1995). The form of the triangle
inequality we use is:

D(
_

Obs,
_

Sim)k ≤ D(
_

Obs,Obs)k +D(Obs,Sim)k +D(
_

Sim,Sim)k (7)10

and is rearranged to give:

D(Obs,Sim)k ≥ D(
_

Obs,
_

Sim)k −D(
_

Obs,Obs)k −D(
_

Sim,Sim)k (8)

where Obs and Sim are bootstrap-generated observed and simulated reflectance data
sets. This equation allows us to estimate a one-sided confidence interval for the true
parameter distance between the observed and simulated reflectance. To estimate the15

distributions of D(
_

Obs,Obs)k and D(
_

Sim,Sim)k , we generate new reflectance data sets
with the same number of spectra, N, as the original observed and simulated data
sets by using bootstrap with replacement. The bootstrapped data sets are formed by
randomly selecting reflectance spectra in the observed and simulated sets of spectra
until the newly formed data sets are the same size as the originals. This is done with20

replacement, meaning that it is possible for each spectrum to be chosen more than
once. We perform this procedure using a random number generator.

We calculate the principal components for the bootstrap-generated data sets and
find the intersections between the bootstrap-generated and original observed and sim-
ulated data sets. Then we calculate the distances between the generated and original25
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data sets for each number of k components used to define the subspaces. We repeat

this process 500 times to estimate distributions of D(
_

Obs,Obs)k and D(
_

Sim,Sim)k ,
using those distributions to find the distances in the 97.5 percentile to use in Eq. (8)
for the estimation of D(Obs,Sim)k . 500 repetitions was the value used by Crone and
Crobsy (1995), but we also investigated the impact different numbers of repetitions had5

on the results, finding that at least 500 repetitions create continuous distance distribu-
tions. Creating these distributions with 1000 repetitions resulted in equivalent estima-
tions of D(Obs,Sim)k compared to using 500 repetitions. If D(Obs,Sim)k > 0, then the
null hypothesis is rejected; otherwise, we fail to reject the null hypothesis. We can also
think of these population distances as 95 % confidence intervals. If D(Obs,Sim)k > 0,10

then the confidence interval does not include zero; otherwise, the confidence interval
does include zero, and it is possible for the population distance to be zero.

4 Hyperspectral reflectance variability

4.1 SCIAMACHY and OSSE data processing

Because we are quantitatively evaluating the similarity between the SCIAMACHY and15

OSSE reflectance spectra, it is important that the spectral, spatial, and temporal reso-
lution and sampling of the two data sets are comparable. We created identically sized
reflectance data sets by spectrally, spatially, and temporally resampling both of them
and by including only averaged spectra located in grid boxes with data in both the
SCIAMACHY and OSSE resampled data sets. Both sets of reflectance spectra were20

resampled to 10 nm full-width at half maximum spectral resolution and 3 nm sampling
resolution. The OSSE spectra are produced using monthly averaged data on a 1.25◦

grid (Sect. 2.2). To ensure that SCIAMACHY pixels from at least every three days (the
approximate time over which SCIAMACHY obtains near global coverage) throughout
each month were represented in the monthly average of each grid box, we expanded25

the grid to 5.625◦, four times the size of the original OSSE grid. We temporally aligned
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the data by calculating monthly averages of the SCIAMACHY reflectance by linearly
averaging the SCIAMACHY pixels falling into each 5.625◦ grid box within each month.

It is a challenge to entirely eliminate the sampling differences between the two data
sets. The OSSE spectra were generated using gridded input data from monthly aver-
aged GCM output. The SCIAMACHY reflectance spectra, on the other hand, were in-5

stantaneous measurements from a satellite in sun-synchronous, near polar orbit. Even
with the data resampling, inherent differences between satellite-measured and model-
generated reflectance may remain. The objective of the steps presented above is to
mitigate the impact on the quantitative comparison due to sampling differences.

To understand the effect of computing comparable spatial grids and monthly aver-10

ages, we performed PCA on all SCIAMACHY reflectance spectra measured in Jan-
uary, April, July, and October 2004 for each month separately. The eigenvalue spectra
from these all-inclusive PCA results (Fig. 2: gray) show that the variance of the SCIA-
MACHY dominant modes is higher than when the spatial and temporal averages are
computed. The shapes of the eigenvalue spectra in black, calculated from the resam-15

pled SCIAMACHY data are much closer to the shape of the red OSSE eigenvalue
spectra, implying that the distribution of information is also more comparable after re-
sampling. Despite the sampling differences between the SCIAMACHY and OSSE data
sets, the spectral, temporal, and spatial resampling performed here aligns the distribu-
tion of the variability within the data sets, lending confidence to the appropriateness of20

the applied resampling.

4.2 Spectral reflectance variability

To illustrate the quantitative methods presented in Sect. 3.2.3 this study will focus on
the four months for which we had daily SCIAMACHY data in 2004, January, April,
July, and October as an initial evaluation of the OSSE performance at the beginning of25

the twenty-first century. Before employing the quantitative comparison tools described
above, we first calculate the principal components from the unstandardized OSSE
and SCIAMACHY reflectance spectra. The eigenvalues (i.e. the variance of each PC
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dimension) for each of the four cases are shown in Fig. 2. The shapes of the eigen-
value spectra show that the general distributions of the variance for both data sets are
similar, at least for, approximately, the first 15 or 16 dimensions. The cumulative vari-
ance contribution in Fig. 3 shows some differences in variance in the first few PCs, but
for both data sets and all four months, six PC dimensions explain between 99.7 % and5

99.9 % of the total data variance.
In addition to studying the distribution of variance for the two data sets, we also

examine the spectral shapes of the first several components that dominate the data
variability. Figure 4 compares the first nine October 2004 SCIAMACHY and OSSE PCs.
Generally among the four cases the spectral shapes of the SCIAMACHY and OSSE10

components are very similar. The spectral shapes of the first two components are
nearly identical for the four cases and together explain 94.7–97.5 % (OSSE) and 95.7–
98.3 % (SCIA) of the data variance. In addition to there being similarities between the
PCs from the two data sets, there are spectral features that are indicative of physical
variables. Water absorption bands are evident in at least the first four PCs for both15

data sets. The first PC resembles a cloud reflectance spectrum, and PC4 resembles
a green vegetation reflectance spectrum (Fig. 1). It is likely that the other PCs explain
physical variables but they cannot be uniquely identified. An illustration of this point is
presented in Fig. 5, which shows the October 2004 OSSE and SCIAMACHY scores for
PC4 and PC5. The spectral shape of PC4 is indicative of vegetation. This is confirmed20

in the spatial distribution of the scores by the relatively high scores over regions that
are green in October such as the Amazon, the Southeastern US, sub-Saharan Africa,
and Southern Asia. Moreover, negative scores are seen over areas typically devoid of
green vegetation such as the oceans, polar regions, and semi-arid regions. Although
similar spatial patterns are also observed in the PC5 scores, evidence that PC5 is25

partly explained by vegetation is not apparent by the spectral shape of PC5. This point
also helps to support the importance of comparing entire subspaces when evaluating
the data set similarity rather than solely relying on one-to-one PC comparisons.

28323

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/28305/2012/acpd-12-28305-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/28305/2012/acpd-12-28305-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 28305–28341, 2012

Comparison of the
variability in obs. and

sim. shortwave
reflectance

Y. L. Roberts et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

There are some cases, however, in which individual comparisons of the PCs can
reveal important differences between data sets. For example, although the first Oc-
tober 2004 SCIAMACHY PC contains some aspects of a cloud reflectance spectrum
(Fig. 4), its spectral shape also contains characteristics of a frozen surface, such as
ice clouds or ice or snow at the surface. The local maximum that occurs between 14005

and 1450 nm occurs because of its position between the water vapor absorption band
centered at 1350 nm and the ice absorption band centered at approximately 1500 nm.
Although it appears that the first OSSE PC does not have the same ice spectral fea-
ture at 1400 nm as the first SCIAMACHY PC, this feature is in the OSSE PC, but it is
broadened so that the peak occurs at a longer wavelength. We also see this difference10

in the January and April 2004 PC1 cases. It is likely that we do not see this ice fea-
ture and difference between the data sets in the July PC1 because of the reduction
in Arctic snow and ice in July and the Antarctic night that occurs during this time. The
way in which this feature is manifested in the PC may be representative of how snow
reflectance values from MODIS are used as input for MODTRAN within the OSSE.15

The BRDF under snowy conditions was determined from snow-covered and snow-free
MODIS surface reflectance and was created by linearly interpolating over the MODIS
channels to obtain an estimate of the spectral BRDF function for each grid box. This
estimate was input into MODTRAN. The necessary linear interpolation over the coarse
band coverage in the near infrared may be the cause of the broadened ice feature20

around 1400, which is visible in the PC1 comparison in Fig. 4.

4.3 Quantitative subspaces comparison

Initial evaluation of the comparison of the eigenvalues and PC spectral shapes sug-
gests that the variance distribution between these data sets is similar. To quantify how
much of the variance is shared between the observed and simulated reflectance, we25

begin by using the selection criteria described in Sect. 3.1.3 to estimate the number
of dimensions that define the boundaries between signal and noise. For example, us-
ing the October 2004 logarithmic eigenvalue plot suggested by Craddock and Flood
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(1969) (Fig. 2d) it appears that six dimensions may be sufficient to represent the signal
explained by the variability in the data set, which is also how many dimensions the frac-
tional Kaiser method (Jolliffe, 1972) (Sect. 3.1.3) suggested. The dip between the sixth
and seventh eigenvalues and the change in slope before and after these eigenvalues
likely indicates that the first six dimensions explain most of the variance in the data5

sets. This is also supported by the increasing amount of noise in the PC shapes after
PC6 in Fig. 4. The Broken Stick Method (Jolliffe, 2002) suggested 14 dimensions, but
the Broken Stick Method typically suggests the largest number of dimensions among
the PC selection criteria described in Sect. 3.1.3. Using these criteria for the other three
months as well, we have estimated that seven dimensions explain the reflectance sig-10

nal for January and April, and eight dimensions explain the signal for July. Because
the Broken Stick Method suggested that between 14 and 16 dimensions were above
the noise level, we calculated intersections using the first twenty eigenvectors. Even
though we estimated that fewer dimensions than define the boundary between signal
and noise, we calculated 20 different intersections with between one and twenty eigen-15

vectors to find the number of dimensions at which the two data sets are different at the
95 % confidence level.

For each month, the twenty intersections were computed using the subspaces
spanned by 1 ≤ k ≤ 20 eigenvectors of the SCIAMACHY and OSSE data, and the
spectral decompositions of each of these intersections were performed. Recall that the20

eigenvalues from the intersection decomposition are measures of similarity between
the subspaces. The eigenvalues for each of these subspaces are shown in Fig. 6 for
each month, with the maximum possible similarity, k, shown in black. As k, the num-
ber of dimensions used to define each subspace, increases between one and twenty
dimensions, the observed similarity between the two data sets decreases. This is illus-25

trated by the increasing difference between the red lines and the black lines in Fig. 6.
To quantify the largest number of dimensions that the two data sets share, we first
calculate the distance between each set of subspaces. The calculated subspace dis-
tances, the maximum possible distances (

√
k) and the ration between the calculated
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distance and the maximum distance are shown in Fig. 7. The subspace distances also
confirm the result shown by the eigenvalues in Fig. 6, most clearly demonstrated by
the relative distances, which generally increase with the number of dimensions used to
define each subspace.

The subspace distances shown in Fig. 7 are the observed distances on the left side5

of Eq. (8). Continuing with the process, the triangle inequality is used to estimate the
population distances, shown in Fig. 8. This statistical significance test shows how many
k-dimensional subspaces are the same at a 95 % confidence level, and vertical lines
indicate the largest k-dimensional subspace for which this is true for each case in
Fig. 8. We also note that the selection criteria results using the logarithmic eigenvalue10

plot shown in Fig. 2 give similar values to those determined by the statistical signif-
icance test. The statistical significance test found that the two data sets agree over
seven dimensions in April and July and eight dimensions in January and October. This
alignment demonstrates that the two data sets are generally similar at the signal to
noise boundary, discussed at the beginning of this section and estimated to be located15

at seven (January), seven (April), eight (July), and six (October) dimensions using the
techniques described in Sect. 3.1.2. Using the cumulative variance explained (Fig. 3)
by the number of dimensions indicated by the vertical lines in Fig. 8 we can determine
how much OSSE and SCIAMACHY variance is explained in the k-dimensional space
in which they are similar at the 95 % confidence level. The results in Figs. 3 and 8 show20

that for the number of dimensions over which the two data sets agree in January, April,
July, and October, approximately 99.9 % of the SCIAMACHY and OSSE data variance
is explained.

It is also informative to inspect the spectral shapes of each pair of transformed eigen-
vectors (Fig. 9). Using the October 2004 results from the statistical significance test,25

we show the transformed vectors of the eight-dimensional shared space between the
SCIAMACHY and OSSE reflectance data. The first three eigenvectors exhibit several
spectral characteristics that are also present in the original PCs in Fig. 4. The fourth
transformed eigenvector in part resembles the original PC4, but the others contain only
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segments of recognizable spectral features, if any. Because some of the transformed
vectors resemble the original PCs, this means that overlapping information between
the two data sets is very similar to that of the original dominant modes of observed
variability. By applying the intersection decomposition and the statistical significance
technique, we have presented an objective method with which to quantitatively com-5

pare two multivariate subspaces, a technique which has several other applications, as
described below.

5 Conclusions and future work

In this study, we used SCIAMACHY-measured hyperspectral solar reflectance to eval-
uate how well OSSE-simulated hyperspectral reflectance captures variability in the10

Earth’s climate system. We presented two primary ways in which the information be-
tween two data sets can be compared. First, we qualitatively compared the most domi-
nant principal components that explained the majority of the variance in both data sets
and found that the two data sets appear to share similar variance distributions. We
also found that linear interpolation of surface reflectance in the OSSE manifests as15

a difference in the first principal component for the January, April, and October cases.
Second, we quantitatively compared the spectral variability of the two data sets us-
ing their principal components. This analysis showed that the OSSE and SCIAMACHY
reflectance spectra share a large fraction of their spectral variability and that this vari-
ability shares spectral characteristics with the original PC transformation of the mea-20

sured data set. From these results we conclude that at the beginning of the century,
the OSSE appears to give a realistic representation of the Earth’s variability relative to
SCIAMACHY-measured reflectance. These findings provide a necessary, initial condi-
tion that helps us to understand the predictive potential of the OSSE for understanding
how Earth’s variability may change during the 21st century.25

There are several other research questions that the quantitative comparison method
applied in this study could be used to address. For the OSSE simulations used in this
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study, CCSM3 output was used, but other climate model results could also be used
for the OSSE simulations. The comparison method presented here can provide rigor-
ous objective testing of these different climate models to determine which model best
reproduces Earth’s present-day climate variability and is likely better to study future
changes in Earth’s climate.5

Feldman et al. (2011a) used the OSSE to compare the shortwave reflectance signal
observed between two different emission scenarios simulated using CCSM3: the con-
stant CO2 and the A2 emission scenarios. The quantitative method described in this
study can be used to understand how changes in different climate forcing scenarios are
manifested in the variability of hyperspectral reflectance. These results can be studied10

during the first decade of the 21st century, for comparison to SCIAMACHY reflectance,
and during the entire 21st century, to attempt to understand how changes in climate
contribute to changes in reflected shortwave spectral variability on a centennial time
scale. This may provide insight into which variables contribute to changes in the mea-
sured reflectance over different time scales. In a subsequent paper, we will evaluate15

how well the OSSE reproduces the temporal variability of the Earth’s climate system
over the decade for which we have SCIAMACHY measurements.

In addition to the ideas presented above, there are other ways in which to improve
and expand upon the analysis presented in this study. We focused on the similarities
between the observed and simulated data, but it may also be useful to investigate20

the nature of the differences between the two data sets. The Minimum Noise Frac-
tion (MNF) transform (Green et al., 1988) is a method that can be used in conjunction
with the comparison method described in this study. The MNF is a two-part PCA that
whitens or decorrelates the noise in the data set, so if a well-defined noise character-
ization is available from noise-equivalent dark spectra during an instrument’s lifetime,25

this transformation can be applied to the radiances before the quantitative comparison
method is used. One of the benefits of the MNF transform is that it typically provides
a clearer boundary between the signal and noise levels using the eigenvalue spectrum.

28328

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/28305/2012/acpd-12-28305-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/28305/2012/acpd-12-28305-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 28305–28341, 2012

Comparison of the
variability in obs. and

sim. shortwave
reflectance

Y. L. Roberts et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Another improvement to this work involves the method used to spatially and tempo-
rally resample the sun-synchronous satellite-measured reflectance. Although the meth-
ods aligned the spectral, temporal, and spatial sampling of the two data sets, it would be
beneficial to establish more appropriate methods for gridding sun-synchronous satel-
lite data to minimize the potential sampling differences in comparisons such as these.5

As climate observation systems are deployed, we will be able to apply the techniques
described here to further improve the development of climate OSSEs as future instru-
ments are designed. The results presented in this paper provide a foundation for how
these quantitative comparisons between two hyperspectral data sets can be made.
These results also provide the community with a measure of how well the OSSEs are10

able to reproduce the variability of the Earth’s climate system.
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Fig. 1. SCIAMACHY-measured reflectance spectra for three scene types: a thick cloud (black),
cloud-free vegetation (blue), and cloud-free ocean (red).
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a) b)

c) d)

Fig. 2. The first 30 eigenvalues for the January (a), April (b), July (c), and October (d) 2004
SCIAMACHY and OSSE Reflectance PCs. The difference in shape between each of the grey
lines and the black lines shows how well the SCIAMACHY data resampling performed prior to
PCA aligned the SCIAMACHY distribution of information with that of the OSSE.
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Fig. 3. The cumulative variance fraction for each of the four cases for the first ten PC dimen-
sions. For all four months, both SCIAMACHY (solid) and OSSE (dashed), six PC dimensions
explain between 99.7 % and 99.9 % of the total data variance in both data sets.
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Fig. 4. The first nine October 2004 SCIAMACHY (black) and OSSE (red) principal compo-
nents show a close comparison between the two data sets. Physical variables are identifiable
within some PC spectral shapes including clouds (PC1), vegetation (PC4), and water absorp-
tion (PC1–4).
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a) b)

c) d)

Fig. 5. The spatial distribution of the October 2004 PC4 SCIAMACHY (a) and OSSE (b) scores
and the PC5 SCIAMACHY (c) and OSSE (d) scores. Both PC4 and PC5 scores show evidence
of vegetation, implying that this physical signal is distributed between at least these two com-
ponents. Data set similarities seen in the overlap of PC shapes in Fig. 4 are reinforced by the
similarities seen in the spatial distribution of the scores.
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a) b)

c) d)

Fig. 6. The comparison of the eigenvalues from the spectral decomposition of the intersection
to the maximum possible eigenvalue for each number of subspace dimensions. As more dimen-
sions are used to define the subspaces, the similarity identified by the eigenvalues decreases.
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a) b)

c) d)

Fig. 7. The observed subspace distances between the SCIAMACHY and OSSE reflectance
subspaces for ten subspaces (red) compared to the maximum possible distance between the
two subspaces (black). The blue line shows the ratio between the observed subspace distance
and the maximum possible distance for each number of subspace dimensions, that is, the ratio
of the values on the red line to the values on the black line.
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a) b)

c) d)

Fig. 8. The population distances between the OSSE-simulated and SCIAMACHY-observed
reflectance spectra for January (a), April (b), July (c), and October (d) 2004. The distances less
than zero correspond to subspaces of k dimensions that are the same at the 95 % confidence
level. The vertical lines indicate the maximum number of dimensions the two data sets share
at the 95 % confidence level for each case.

28340

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/28305/2012/acpd-12-28305-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/28305/2012/acpd-12-28305-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 28305–28341, 2012

Comparison of the
variability in obs. and

sim. shortwave
reflectance

Y. L. Roberts et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 9. The spectral shapes of the transformed eigenvectors for October 2004 in the shared
intersection space. The first six or seven dimensions align well, and the first four dimensions
share spectral characteristics with the first four original October 2004 PCs, shown in Fig. 4.
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